SOLVING WORD PROBLENTS USING TWO EQUATIONS

REPORTED BY:

RACEL G. FACUN

RAYANX B. HUDOY

The strategies used to solve problems using two equations are:

- Step 1: Represent one of the unknowns as x and the other unknown as y.
- Step 2: Translate the information about the variables into two equations using the two unknowns.
- Step 3: Solve the system of equations for x and y.

Example \# 1:

One number is 8 more than another number and the sum of the two numbers is 26 . Find the numbers.

Solution:
Strategy: let $\boldsymbol{x}=$ the smaller number

$$
y=\text { the larger number }
$$

Since one number is 8 more than the other number, the first equation is

$$
y=x+8
$$

Example \# 1:

One number is 8 more than another number and the sum of the two numbers is 26 . Find the numbers.

Solve the system:

$$
\begin{aligned}
y & =x+8 \\
x+y & =26
\end{aligned}
$$

Substitute the value for y in the second equation and solve for x since $y=x+8$

$$
x+y=26
$$

$$
\begin{aligned}
x+x+8 & =26 \\
2 x+8 & =26 \\
2 x+8-8 & =26-8 \\
2 x & =18 \\
\frac{2 x}{2} & =\frac{18}{2}
\end{aligned}
$$

Example \# 1:

One number is 8 more than another number and the sum of the two numbers is 26 . Find the numbers.
find the other number:

$$
\begin{aligned}
& y=x+8 \\
& y=9+8 \\
& y=17
\end{aligned}
$$

hence, the numbers are 9 and 17. check the second equation.

$$
x+y=26
$$

$$
9+17=26
$$

$$
26=26
$$

Example \# 2:

The sum of the digits of a two-digit number is 15 . If the digits are reversed, the new number is 9 more than the original number. Find the number.

Solution:

Strategy: Let $x=$ the ten's digit

$$
y=\text { the one's digit }
$$

$10 x+y=$ original number
$10 y+x=$ new number with digits reversed

Example \# 2:

The sum of the digits of a two-digit number is 15 . If the digits are reversed, the new number is 9 more than the original number. Find the number.

Since the sum of the digits of the number is 15 , the first equation is

$$
x+y=15
$$

Solve the system:

$$
\begin{aligned}
x+y & =15 \\
10 x+y+9 & =10 y+x
\end{aligned}
$$

Since reversing the digits gives a ne number which is 9 more than the original number, the equation is

$$
(10 x+y)+9=(10 y+x)
$$

Example \# 2:

The sum of the digits of a two-digit number is 15 . If the digits are reversed, the new number is 9 more than the original number. Find the number.

Solve the first equation for y, substitute in the second equation and find x .

$$
\begin{aligned}
10 x+y+9 & =10 y+x \\
10 x+(15-x)+9 & =10(15-x)+x \\
10 x+15-x+9 & =150-10 x+x \\
9 x+24 & =150-9 x \\
9 x+9 x+24 & =150-9 x+9 x \\
18 x & =150-24 \\
18 x & =126 \\
\frac{18 x}{18} & =\frac{128}{18}
\end{aligned}
$$

$$
x=7
$$

Example \# 2:

The sum of the digits of a two-digit number is 15 . If the digits are reversed, the new number is 9 more than the original number. Find the number.

Find y :

$$
\begin{aligned}
x+y & =15 \\
7+y & =15 \\
y & =15-7 \\
y & =8
\end{aligned}
$$

Hence the number is 78.

Check the information in the second equation.
Original number is 78
Reversed number is $\mathbf{8 7}$

Since 87 is 9 more than 78 , the answer is correct.

EXAMPLE \# 3:

A person has 8 coins consisting of quarters and dimes. If the total amount of this change is $\$ 1.25$, how many of each kind of coin are there?

Solution:

Strategy: let $x=$ the number of quarters
Let $y=$ the number of dimes
$25 x=$ the value of the quarters
And $10 y=$ the value of the dimes

Since the total values of the quarters plus the dimes is $\$ 1.25$, the second equation is

$$
25 x+10 y=125
$$

Solve the system:

$$
x+y=8
$$

$$
25 x+10 y=125
$$

Since there are 8 coins, the first equation is

$$
x+y=8
$$

EXAMPLE \# 3:

A person has 8 coins consisting of quarters and dimes. If the total amount of this change is $\$ 1.25$, how many of each kind of coin are there?

Find the value of y in the first equation. substitute it in the second equation and solve for \mathbf{x}.

$$
\begin{aligned}
x+y & =8 \\
x-x+y & =8-x \\
y & =8-x \\
25 x+10 y & =125 \\
25 x+10(8-x) & =125
\end{aligned}
$$

$$
\begin{aligned}
25 x+80-10 x & =125 \\
15 x+80 & =125 \\
15 x+80-80 & =125-80 \\
15 x & =45 \\
\frac{15 x}{15} & =\frac{45}{15} \\
x & =3
\end{aligned}
$$

Example \# 3:

A person has 8 coins consisting of quarters and dimes. If the total amount of this change is $\$ 1.25$, how many of each kind of coin are there?

Find y :
Hence, there are 3 quarters and 5 dimes.

$$
\begin{gathered}
x+y=8 \\
3+y=8 \\
3-3+y=8-3 \\
y=5
\end{gathered}
$$

Check if their sum is $\mathbf{\$ 1 . 2 5}$.

$$
\begin{array}{r}
3 \text { quarters }=3 \times \$ 0.25=\$ 0.75 \\
5 \text { dimes }=5 \times \$ 0.10=\$ 0.50 \\
\$ 0.75+\$ 0.50=\$ 1.25
\end{array}
$$

Example \# 4:

A merchant mixes some coffee costing $\$ 4$ a pound with some coffee costing $\$ 3$ a pound. How much of each must be used in order to make 20 pounds of mixture costing $\$ 3.75$ a pound.

Solution:

Strategy:

Let $x=$ the amount of $\$ 4$ coffee used
$y=$ the amount of $\$ 3$ coffee used

Since the total amount of the mixture is 20 pounds, the first equation is

$$
x+y=20
$$

Since the cost of the mixture is $\$ 3.75$, the second equation is

$$
4 x+3 y=20(3.75)
$$

Example \# 4:

A merchant mixes some coffee costing \$4 a pound with some coffee costing \$3 a pound. How much of each must be used in order to make 20 pounds of mixture costing $\$ 3.75$ a pound.

Solve the system:

$$
\begin{gathered}
x+y=20 \\
4 x+3 y=20(3.75)
\end{gathered}
$$

Solve the first equation for x. Substitute in the second equation and solve for y.

$$
\begin{aligned}
x+y & =20 \\
x+y-y & =20-y \\
x & =20-y
\end{aligned}
$$

Example \# 4:

A merchant mixes some coffee costing $\$ 4$ a pound with some coffee costing $\$ 3$ a pound. How much of each must be used in order to make 20 pounds of mixture costing $\$ 3.75$ a pound.

Substitute:

$$
\begin{aligned}
4 x+3 y & =20 \\
4(20-y)+3 y & =20(3.75) \\
80-4 y+3 y & =75 \\
80-y & =75 \\
80-80-y & =75-80 \\
-y & =-5 \\
\frac{-Y}{-1} & =\frac{-5}{-1} \\
Y & =5 \text { pounds }
\end{aligned}
$$

Solve for x :

$$
\begin{aligned}
x+y & =20 \\
x+5 & =20 \\
x+5-5 & =20-5 \\
x & =15 \text { pounds }
\end{aligned}
$$

Example \# 4:

A merchant mixes some coffee costing $\$ 4$ a pound with some coffee costing $\$ 3$ a pound. How much of each must be used in order to make 20 pounds of mixture costing $\$ 3.75$ a pound.

Hence, 15 pounds of the $\$ 4$ coffee are needed and 5 pounds of of the $\$ 3$ coffee are needed

Check the second equation.

$$
\begin{aligned}
4 x+3 y & =20(3.75) \\
4(15)+3(5) & =75 \\
60+15 & =75
\end{aligned}
$$

$$
75=75
$$

Use two equations with two unknowns.

1. One number is $\mathbf{4}$ times another number. If their sum is 40 , find the numbers.
2. The sum of the digits of a two-digit number is 14 . If the digits are reversed, the new number is $\mathbf{1 8}$ more than the original number. Find the number.
3. A person has 18 coins, some of which are nickels and the rest of which are dimes. If the total amount of the coins is $\mathbf{\$ 1 . 3 0}$, find the number of nickels and dimes.
4. Matt is 4 times older than mike. In 10 years, he will be twice as old as mike. Find their ages.
